
BlueGene/L Software OverviewBlueGene/L Software Overview

Sid Chatterjee Sid Chatterjee Manish GuptaManish Gupta Jose Moreira Jose Moreira
IBM T. J. Watson Research CenterIBM T. J. Watson Research Center

OutlineOutline
System software overview

Operating system - Linux, HPK
Compilers - Fortran95, C99, C++
Math library - subset of ESSL
Message passing - MPI
File system
Job scheduler
System management, including control, bringup, and RAS

In-depth look at some software components
Single node compilation and performance issues - Sid Chatterjee
Message passing support: design and performance issues - Bill Gropp,
Rusty Lusk, Jose Moreira

compute node
application volume

BG/L: Application Developer's ViewBG/L: Application Developer's View

Collection of compute nodes with fast network connections
Compute nodes dedicated to running user application, and almost
nothing else - simple high performance kernel (HPK)

compute node
application volume

I/O node
operational surface

BG/L: Operating System ServicesBG/L: Operating System Services

I/O nodes provide a more complete range of OS services, e.g., I/O,
sockets, process launch and termination - run Linux
Operationally, compute nodes are "invisible" - allows OS on compute
nodes to be simple, makes the machine more manageable

compute node
application volume

I/O node
operational surface

service node
control surface

BG/L: Overall Operational ViewBG/L: Overall Operational View

Service nodes have private ethernet connection to core BG/L
components
System management services (e.g. heartbeating, monitoring errors)
largely transparent to application/system software

N compute nodes

BG/L: Programming ModelsBG/L: Programming Models

SPMD with message passing (MPI) among N compute processes
one processor on each node dedicated to communication

Foundation for other programming models, e.g., UPC, Charm++

Default mode of operation

Other Modes: Using Both CPUs for Computation Other Modes: Using Both CPUs for Computation

Message passing between the two CPUs on a compute node
use two MPI processes on each node, one bound to each processor
each processor on a node handles both computation and communication
distributed memory semantics convenient on node w/o cache coherence

Shared memory programming on compute node
Can be selectively used for compute-bound parallel regions
Need careful sequence of cache line flush, invalidate, and copy
operations to deal with lack of L1 cache coherence in hardware
Alternatives:

OpenMP pragma extension - compiler managed code generation
Explicit multithreading - user has to manage coherence of caches

Caveat - these modes may not lead to higher performance if
program is communication bound or memory bandwidth bound

High Performance KernelHigh Performance Kernel
Simple kernel for compute nodes
Support for:

multithreaded (fixed number of threads), single process execution
simple memory management for a fixed size virtual memory space

no demand paging
no TLB misses - using large pages
set attributes on pages to control cache behavior

interaction with control system
I/O through function shipping to I/O nodes
debugging through ptrace client

Same set of user-space services as Linux, including: libraries,
compilers, system programming interface (SPI)

LinuxLinux

BG/L specific extensions to PPC 440 port
device drivers for ethernet, tree
interrupt controller
support for double FPU

Enhancements
smart device drivers for exploiting second CPU
SMP mode without cache coherence
support for variable-sized pages
demand paging over network
eliminate unnecessary daemons
reduce frequency of asynchronous events

BGLsim - System-level simulator (1)BGLsim - System-level simulator (1)
Program development based on complete system-level simulator for BG/L

based on SimOS-like Mambo simulation framework from Austin Research Lab.
complements our VHDL simulators (which are much slower)

This simulator is architecturally accurate:
executes the full instruction set of BG/L, including SIMD Floating Point Unit
models all the devices, including Ethernet, torus, tree, lock box, etc
supports development of system software and applications
currently not performance aware: only counts instructions, not cycles
we have simulated systems with up to 128 nodes (not a limitation)

Efficient simulation that supports code development:
500,000 - 1,000,000 BG/L instructions/second on 1 GHz Pentium III
generates statistics like instruction counts, cache misses.

We have used it to develop/test HPK, Linux, device drivers, networking, MPI,
compilers, FPU benchmarks

Node Compilers for BlueGene/LNode Compilers for BlueGene/L

Support Fortran, C, C++
Backend enhanced to support PPC440 and to target SIMD FPU on
nodes

Finds parallel operations that match SIMD instructions
Register allocator enhanced to handle register pairs
Instruction scheduling tuned to unit latencies

Initial design of (2-way) SIMD FPU architecture was driven by key
workload kernels such as matrix-matrix product and FFT

Identified several mux combinations for SIMD operations not usually
seen on other SIMD ISA extensions (Intel SSE, PPC AltiVec), e.g.,
dP = aP + bP * cP || dS = aS - bS * cS

dP = aP + bP * cP || dS = aS + bP * cS

Message PassingMessage Passing

Three layers of communication libraries:
HAL - delivery of packets
Message layer - delivery of arbitrary sized messages
MPI - for end user application

HAL and Message layer contain BG/L-specific code
delivery of packets over torus and tree networks
using second CPU on compute node as communication coprocessor
can be used by applications, but are intended more for library developers

MPI based on MPICH2 being developed by Argonne National Lab
builds upon Message layer
need highly scalable implementation for tens of thousands of nodes -
consistent with MPICH2 design goals
BG/L specific optimizations for exploiting tree and broadcasts on torus

C

C

C

C I

I/O-node
and

file server
network

Server

C

C

C

C I Server

Server

... ...

Host

RAID

RAID

RAID

RAID

File System: GPFS on PC Cluster File System: GPFS on PC Cluster

IP Stack
NFS Client

GPFS

NFS file I/O in BG/LNFS file I/O in BG/L

NFS Server

User application

File API

Tree SPI

Compute node

Tree SPI

Service process

File API

I/O node kernel

NFS client

I/O node

Tree

Ethernet

ToolsTools

Debugger
Preliminary discussions with Etnus to support TotalView debugger on
BG/L
We will provide ptrace debug client support on BG/L nodes.

Performance tools
Possibilities for visualization of messaging traffic are: Paravar (UPC
Barcelona), Vampir (PALLAS), PE Benchmarker (IBM)
Performance counters data : PAPI

ETH chip
(IP address)

Ethernet

cNode Blink

ioNode

JTAG

JTAG

proprietary

I2C

JTAG

Control networkControl network

Each device under control is identified by (IP, device number)

Core
Monitoring
and Control

System
(CMCS)

All control transactions are initiated by the
CMCS process

Extensive error checking and correcting /
recording mechanisms in each h/w
component - status checked periodically by
CMCS process, critical for fault isolation.

ETH chip
(IP address)

Core Monitoring and Control System (CMCS)Core Monitoring and Control System (CMCS)

iDEVICE

Action

Control

iDEVICE layer:
a transport layer for talking to devices over
IP
sends/receives bit-vectors

Action layer:
implements device-specific semantic actions
straightforward correspondence to
bit-vectors at iDEVICE layer

Control layer:
implements complex operations with
multiple steps
E.g., IPL, power on, etc

Overall System ManagementOverall System Management

CMCS fits into the Cluster System Management (CSM) framework
as a Resource Manager
CSM framework provides

high availability services
connectivity between components
monitoring services
GUI for system administrator

Extending with RAS database containing information about:
machine topology (compute nodes and I/O nodes)
IP address of each ETH and devices attached to it
state (assumed and/or measured) of each device
bitvectors for controlling devices
event logs - information on errors

Fault Recovery Fault Recovery

Application-level checkpointing
user controlled - application does self checkpointing
application responsible for quiescing before checkpoint
implementation in user level library
restart is user-initiated

System-initiated checkpointing
will explore different levels of transparency

Job Scheduling Job Scheduling

Job scheduling strategies can significantly impact the utilization of
large computer systems
Machines with toroidal topology, as opposed to all-to-all switch,
are particularly sensitive to job scheduling
Based on IBM LoadLeveler product

User submits jobs from the host (Front End node)
Support for initiating parallel jobs on BG/L core based on MPICH2

BG/L specific extensions
Topology aware scheduling, including backfilling
Task migration

Conclusions Conclusions
We are developing a BG/L system software stack with Linux-like
personality for user applications

custom solution (HPK) on compute nodes for highest performance
Linux solution on I/O nodes for flexibility and functionality

We will exploit both CPUs in the BG/L compute node
Communication infrastructure is layered - supports MPI and the
development of new application-level communication libraries
Simulator supports system software and application development
Leveraging IBM product infrastructure on compilers, job
scheduling/management (LoadLeveler) and clustered systems
management (CSM)

